当前位置:首页 > 专题范文>公文范文> 正文

五年级下学期数学试题及答案4篇

小新秘书网 发表于2023-07-04 11:00:09 来源:网友投稿

五年级下学期数学试题及答案1、小数乘法的计算法则:先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。注意:计算结果中下面是小编为大家整理的五年级下学期数学试题及答案4篇,供大家参考。

五年级下学期数学试题及答案4篇

五年级下学期数学试题及答案篇1

1、小数乘法的计算法则:先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

2、计算中的发现:①一个数(0除外)乘小于1的数,积比原来的数小。如:3.7×0.2=0.74

②一个数(0除外)乘大于1的数,积比原来的数大。如:3.7×2=7.4

③一个数(0除外)乘于1,积和原来的数相等。如:3.5×1=3.5

3、小数乘法的验算方法:①把因数的位置交换,再乘一遍。(通用)②积÷一个因数=另一个因数。

4、小数四则运算顺序跟整数是一样的。(加、减法是第一级,乘、除法是第二级)

①一个算式里,如果含有同一级运算,要从左往右依次计算。

②一个算式里,如果含有两级运算,要先算第二级运算,后算第一级运算。(即是先×÷后+?)

③一个算式里,如果有括号,先算括号里面的,后算括号外面的。

5、积的近似值:先求出积,根据要求用“四舍五入”法保留一定的小数位数。

6、运算定律和性质:

加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)

减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c

乘法:乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】

除法:除法性质:a÷b÷c=a÷(b×c)

上文是五年级数学下册知识点梳理,希望文章对您有所帮助!

五年级下学期数学试题及答案篇2

一、游戏激趣,感知导入

1、说一句相反的话:气球上升7米;杨老板这笔生意赚了3万元;向东走300米;302路公交车有5人上车;今天气温比昨天低了2℃。

2、提到温度,老师就想到了一件宝 贝——温度计。

你认识温度计吗?会读温度计吗?(学生说)

老师介绍温度计:①结构:煤油、刻度(左右不一致)②单位:摄氏温度(℃)和华氏温度(℉),我国是采用摄氏度来计量的。

学习读温度计上的。温度:8℃(学习看大格、小格)、0℃、零下2℃。(重点指导零下温度的读法,明确零上和零下温度都是以0℃为界限的,一上一下,正好相反,零下温度从0℃往下数。)

二、体验深化,探求新知

1、启发:你知道在数学上怎样简洁地表示零上和零下的温度?你是怎么知道的?

2、教学读写方法:

(板书:零上8℃用+8℃或8℃表示,读作:正七

零下2℃用-2℃表示 负二)

3、出示例1的挂图

写出温度计上显示的气温,然后读一读,再比较一下北京和上海温度的区别。

4、“试一试”练习,独立完成,让学生说说想法。

5、谈话:同一时间,不同地点,温度会不同;相同地点,不同时间,温度也会不同。比如今天清晨常州的气温是17℃,中午25℃,这就是我们平常所说的最高气温和最低气温,再比如吐鲁番地区,最高气温和最低气温相差就更大了,是什么原因造成吐鲁番盆地在同一天里有着如此大的温差呢?这主要和它的地形特点(盆地)和海拔有关。

(板书:海拔)

介绍海拔:以海平面为标准,某地与海平面比较得到的相对高度。

6、出示例2图。从图上你知道些什么?

(1)珠穆朗玛峰比海平面高8844米,海拔高度记作+8844米或8844米。

(2)吐鲁番盆地比海平面低155米,海拔高度记作-155米。

7、看一些海拔高度,用正负数表示这些数据:

①泰山海拔1524米,华山2083米。

②死海北面的被称为“地球上最低公园”,海拔负416米。

③世界上海拔最低的城市——巴勒斯坦的杰里科低于海平面300米。

8、你能将黑板上的数据分类吗?说说分类的理由。

小结:像+8、19、+8844这样的数都是正数,像-2、-11、-155这样的数都是负数。

讨论:那0是正数还是负数呢?

指出:温度、海拔等都是以0为分界线,0既不是正数也不是负数。

板书:正数>0,负数<0

三、回归生活、拓展应用

1、你在生活中见过负数吗?举例说说,并说说它表示的意义。

2、练一练1、2独立完成,说说想法。

3、练习一1~3独立写一写,说一说。

练习一4~6独立完成,说说想法。

四、课堂总结知识延伸

1、通过今天的学习你有什么收获?(揭题)

总结:在生活中,很多相反意义的量都可以用正数和负数来表示。如零上温度与零下温度,海平面以上和海平面以下,地面以上楼层和以下楼层,收入和支出,得分与失分,股票上涨与下跌等,它们都可以用正数和负数表示。

2、了解负数的产生。

其实,早在两千多年前,我国劳动人民就已经在生活中运用负数了,这在著名的《九章算术》中就有记载,人们以收入钱为正,以付出钱为负;以粮食增产为正,以减产为负,中国运用正、负数,要比西方国家早好几百年。

五年级下学期数学试题及答案篇3

1、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可以省略不写。

加号、减号除号以及数与数之间的乘号不能省略。

2、a×a可以写作a·a或a,a读作a的平方。2a表示a+a

3、方程:含有未知数的等式称为方程。

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

4、解方程原理:天平平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。、

5、个数量关系式:加法:和=加数+加数一个加数=和-另一个加数

减法:差=被减数-减数被减数=差+减数减数=被减数-差

乘法:积=因数×因数一个因数=积÷另一个因数

除法:商=被除数÷除数被除数=商×除数除数=被除数÷商

6、所有的方程都是等式,但等式不一定都是方程。

7、方程的检验过程:方程左边=……

8、方程的解是一个数;

解方程式一个计算过程。=方程右边

所以,X=…是方程的解。

针对练习

1、判一判下面的说法是否正确。

(1)方程都是等式,但等式不一定是方程。()

(2)含有未知数的等式叫做方程。()

(3)方程的解和解方程是一样的。()

(4)10=4x-8不是方程。()

(5)x=0是方程5x=5的解。()

(6)9.3-1.3=10-2是等式。()

2、解方程。

x+53=102x-17=54

x-0.9=1.2x+310=690

8.5+x=10.2x-0.74=1.5

数学中什么叫数量关系

数量关系就是两个或两个以上的数(或表达式)之间的关系。比如大小、倍数、互为相反数等。数量关系式是量与量之间的关系用式子表达。,比如说a是b的两倍,写成数量关系式是a=2b。

中括号在数学中的含义

在四则运算中,表示计算顺序,在小括号之后、大括号之前;表示两个整数的最小公倍数;表示取未知数的整数部分;在函数中,表示函数的闭区间;在线性代数中,表示矩阵;正则表达式中表示字符集合。

五年级下学期数学试题及答案篇4

一、图形的变换

图形变换的基本方式是平移、对称和旋转。

1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……

等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。

(2)圆有无数条对称轴。

(3)对称点到对称轴的距离相等。

(4)轴对称图形的特征和性质:

①对应点到对称轴的距离相等;

②对应点的连线与对称轴垂直;

③对称轴两边的图形大小、形状完全相同。

对称图形包括轴对称图形和中心对称图形。平行四边形(除棱形)属于中心对称图形。

2、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

(1)生活中的旋转:电风扇、车轮、纸风车

(2)旋转要明确绕点,角度和方向。

(3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。等边三角形绕中点旋转120度与原来重合。

旋转的性质:

(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;

(2)其中对应点到旋转中心的距离相等;

(3)旋转前后图形的大小和形状没有改变;

(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;

(5)旋转中心是不动的点。

3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数

二、因数和倍数

1、整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

例:12是6的倍数,6是12的因数。

(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。

(2)一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。

一个数的因数的求法:成对地按顺序找。

(3)一个数的倍数的个数是无限的,最小的倍数是它本身。

一个数的倍数的求法:依次乘以自然数。

(4)2、3、5的倍数特征

1)个位上是0,2,4,6,8的数都是2的倍数。

2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。

3)个位上是0或5的数,是5的倍数。

4)能同时被2、3、5整除(也就是2、3、5的倍数)的的两位数是90,最小的三位数是120。

同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。

5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。

3、自然数按能不能被2整除来分:奇数、偶数。

自奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。

数偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

最小的奇数是1,最小的偶数是0.

关系:奇数+、-偶数=奇数奇数+、-奇数=偶数偶数+、-偶数=偶数。

5、自然数按因数的个数来分:质数、合数、1三类。

质数(或素数):只有1和它本身两个因数。

合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

1:只有1个因数。“1”既不是质数,也不是合数。

最小的质数是2,最小的合数是4,连续的两个质数是2、3。

每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

20以内的质数:有8个(2、3、5、7、11、13、17、19)

100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、

43、47、53、59、61、67、71、73、79、83、89、97

100以内找质数、合数的技巧:

看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。

关系:奇数×奇数=奇数质数×质数=合数

6、、最小

A的最小因数是:1; A的因数是:A; A的最小倍数是:A;

最小的奇数是:1;最小的偶数是:0;最小的质数是:2;最小的合数是:4;

最小的自然数是:0;

7、分解质因数:把一个合数分解成多个质数相乘的形式。

用短除法分解质因数(一个合数写成几个质数相乘的形式)。

比如:30分解质因数是:(30=2×3×5)

8、互质数:公因数只有1的两个数,叫做互质数。

两个质数的互质数:5和7两个合数的互质数:8和9一质一合的互质数:7和8

两数互质的特殊情况

⑴1和任何自然数互质;⑵相邻两个自然数互质; ⑶两个质数一定互质;

⑷2和所有奇数互质; ⑸质数与比它小的合数互质;

9、公因数、公因数

几个数公有的因数叫这些数的公因数。其中的那个就叫它们的公因数。

用短除法求两个数或三个数的公因数(除到互质为止,把所有的除数连乘起来)

几个数的公因数只有1,就说这几个数互质。

如果两数是倍数关系时,那么较小的数就是它们的公因数。

如果两数互质时,那么1就是它们的公因数。

10、公倍数、最小公倍数

几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)

用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)

如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。

如果两数互质时,那么它们的积就是它们的最小公倍数。

11、求公因数和最小公倍数方法

用12和16来举例

1、求法一:(列举求同法)

公因数的求法:

12的因数有:1、12、2、6、3、4

16的因数有:1、16、2、8、4

公因数是4

最小公倍数的求法:

12的倍数有:12、24、36、48、…

16的倍数有:16、32、48、…

最小公倍数是48

2、求法二:(分解质因数法)

12=2×2×3

16=2×2×2×2

公因数是:2×2=4 (相同乘)

最小公倍数是:2×2 × 3×2×2= 48 (相同乘×不同乘)

三长方体和正方体

1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

长方体特点:

(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体特点:

(1)正方体有12条棱,它们的长度都相等。

(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

相同点

不同点

长方体

都有6个面,

12条棱,

8个顶点。

6个面都是长方形。

(有可能有两个相对的面是正方形)。

相对的棱的长度都相等

正方体

6个面都是正方形。

12条棱都相等。

3、长方体、正方体有关棱长计算公式:

长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4 L=(a+b+h)×4

长=棱长总和÷4-宽-高a=L÷4-b-h

宽=棱长总和÷4-长-高b=L÷4-a-h

高=棱长总和÷4-长-宽h=L÷4-a-b

正方体的棱长总和=棱长×12 L=a×12

正方体的棱长=棱长总和÷12 a=L÷12

4、长方体或正方体6个面和总面积叫做它的表面积。

长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)

无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2

S=2(ab+ah+bh)-ab S=2(ah+bh)+ab

无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh)贴墙纸

正方体的表面积=棱长×棱长×6 S=a×a×6用字母表示:S= 6a2

生活实际:

油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。

注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)

注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。

(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

5、物体所占空间的大小叫做物体的体积。

长方体的体积=长×宽×高V=abh

长=体积÷宽÷高a=V÷b÷h

宽=体积÷长÷高b=V÷a÷h

高=体积÷长÷宽h= V÷a÷b

正方体的体积=棱长×棱长×棱长

V=a×a×a= a3读作“a的立方”表示3个a相乘,(即a·a·a)

长方体或正方体底面的面积叫做底面积。

长方体(或正方体)的体积=底面积×高用字母表示:V=S h

(横截面积相当于底面积,长相当于高)。

注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。

6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

固体一般就用体积单位,计量液体的体积,如水、油等。

常用的容积单位有升和毫升也可以写成L和ml。

1升=1立方分米1毫升=1立方厘米1升=1000毫升

(1 L = 1 dm3 1 ml = 1 cm3)

长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)

注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。

(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

_状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。

排水法的公式:V物体=V现在-V原来

也可以V物体=S×(h现在- h原来)

V物体=S×h升高

8、【体积单位换算】

大单位转换成小单位

÷进率

小单位转换成大单位

进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)

1立方分米=1000立方厘米=1升=1000毫升

1立方厘米=1毫升

1平方米=100平方分米=10000平方厘米

1平方千米=100公顷=1000000平方米

注意:长方体与正方体关系

把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

重量单位进率,时间单位进率,长度单位进率

【单位换算】

大单位小单位

÷进率

小单位大单位

长度单位:1千米=1000米1分米=10厘米1厘米=10毫米1分米=100毫米

1米=10分米=100厘米=1000毫米(相邻单位进率10)

面积单位:1平方千米=100公顷1平方米=100平方分米

1平方分米=100平方厘米1公顷=10000平方米(平方相邻单位进率100)

质量单位:1吨=1000千克1千克=1000克

人民币:1元=10角1角=10分1元=100分

四分数的意义和性质

1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)

3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

4、分数与除法

A÷B=(B≠0,除数不能为0,分母也不能够为0)例如:4÷5=

5、真分数和假分数、带分数

1、真分数:分子比分母小的分数叫真分数。真分数1.

4、真分数

推荐访问:五年级 下学期 数学试题